向量化函数

自定义的 sinc 函数:

In [1]:
import numpy as np

def sinc(x):
    if x == 0.0:
        return 1.0
    else:
        w = np.pi * x
        return np.sin(w) / w

作用于单个数值:

In [2]:
sinc(0.0)
Out[2]:
1.0
In [3]:
sinc(3.0)
Out[3]:
3.8981718325193755e-17

但这个函数不能作用于数组:

In [4]:
x = np.array([1,2,3])
sinc(x)
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-4-9d4f36f2aa7a> in <module>()
      1 x = np.array([1,2,3])
----> 2 sinc(x)

<ipython-input-1-dffe464e3332> in sinc(x)
      2 
      3 def sinc(x):
----> 4     if x == 0.0:
      5         return 1.0
      6     else:

ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

可以使用 numpyvectorize 将函数 sinc 向量化,产生一个新的函数:

In [5]:
vsinc = np.vectorize(sinc)
vsinc(x)
Out[5]:
array([  3.89817183e-17,  -3.89817183e-17,   3.89817183e-17])

其作用是为 x 中的每一个值调用 sinc 函数:

In [6]:
import matplotlib.pyplot as plt
%matplotlib inline

x = np.linspace(-5,5,101)
plt.plot(x, vsinc(x))
Out[6]:
[<matplotlib.lines.Line2D at 0xa24e4e0>]

因为这样的用法涉及大量的函数调用,因此,向量化函数的效率并不高。